
Lecture 2

Ashwini Vaidya

March 20, 2017

0.1 Dynamic Typing

Python uses dynamic typing, which means that it is not necessary to declare
the type of a variable during assignment. In fact, variables themselves do
not belong to a type, but they reference an object, which is is typed (string,
integer, list etc.). When a variable is re-assigned to a string, integer or list,
internally its reference will be updated to a new object. The old reference
to the object is ‘garbage collected’ such that it no longer needs to stay in
memory (See Ascher and Lutz, Ch 6 for more details).

0.2 Lists

Lists are objects that are mutable, unlike strings. This means that lists can
be changed in-place. Elements inside a list may be added or deleted in place

Some useful properties of lists are that they are ordered from left to right
as they are treated as sequences (like strings). They are also nestable, i.e.
a list can contain another list as well as extendable, i.e. their length may
be increased or decreased. The slicing syntax that is applicable for strings
is also used for lists.

We have already seen that lists can also be concatenated and multiplied
like strings.

>>> [1,2,3] +[4,5,6]

[1, 2, 3, 4, 5, 6]

>>>

>>> [‘gollum’] * 3

[‘gollum’, ‘gollum’, ‘gollum’]

Slicing works in the same way, except that a given index returns the
object inside a list, whereas a [start:end] slice will return a new list:

1



>> l=[‘Already’,‘found’,‘a’,‘way’]

>>> l[0]

‘Already’

>>> l[1:3]

[‘found’, ‘a’]

As we saw in the homework assignment, slicing also enables us to change
a list in place, by assigning to a particular slice. We can’t do this with
strings as they are immutable. Assignment using slicing syntax first deletes
an element and then inserts the new one.

>>> l=‘gollum’

>>> l[4:6] =‘y’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’str’ object does not support item assignment

>>> l=[1,2,3]

>>> l[1:2] =[9,9]

>>> l

[1, 9, 9, 3]

>>

0.2.1 List methods

Slicing is not the oft-used way of adding and removing items from a list.
While it’s often used to reference objects that are part of a list, list methods
are a preferred way of adding and deleting elements. The most commonly
used methods are append, extend and pop. Another is sort and reverse.

The append method will take exactly one item (object) and add it to
the end of a list.

>>> l=[‘Already’,‘found’,‘a’,‘way’]

>>> l.append(‘today’)

>>> l

[‘Already’, ‘found’, ‘a’, ‘way’, ‘today’]

>>> l.append(’today’,’yeah’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

2



TypeError: append() takes exactly one argument (2 given)

If you wish to join together more than one item to a list (e.g. another
list), it is better to use extend. If you use append, the results will not be
as you expect, you will get a nested list instead:-

>>> l=[‘Already’,‘found’,‘a’,‘way’]

>>> l.extend([’today’,’too’])

>>> l

[‘Already’, ‘found’, ‘a’, ‘way’, ‘today’, ‘too’]

>>> l=[‘Already’,‘found’,‘a’,‘way’]

>>> l.append([‘today’,‘too’])

>>> l

[‘Already’, ‘found’,‘a’, ‘way’, [‘today’, ‘too’]]

0.3 Truth Tests using if ..

An if .. statement is a conditional and will select an action to be per-
formed on the basis of some truth value. It’s a way of formulating a logical
test in Python. However, it also changes the control flow of the program,
causing it to jump or skip parts of program.

if statements will consist of a header line terminated by a colon, with
an indented block (or blocks) below it. (We have discussed the syntax of
indented lines before in the simple words.py program). In the interpreter,
an if statement automatically brings up continuation dots on the next line
(expecting an indented block to follow). When an unindented blank line is
found, the interpreter assumes that the statement is complete and runs the
entire block.

>>> x = ’python’

>>> if x==’python’:

... print ’monty’

...

monty

if is used to check for comparison, equality and truth values.
The == operator test will allow for equivalence of objects (this is not to

be confused with =, which is used for assignment only–very different things!
The is operator checks for identity of objects

3



>>> l1=[1,2,3]

>>> l2=[1,2,3]

>>> l1==l2

True

>>> l1 is l2

False

>>> s1=’this is a string’

>>> s2=’this is a string’

>>> s1==s2

True

>>> s1 is s2

False

l1 and l2 (and s1 and s2) are equivalent i.e. their components are exactly
the same. However, they are not the same object in memory and hence fail
the identity test.

The result ‘True’ and ‘False’ are Boolean truth values, where True stands
for the integer ‘1’ and the False. In general, numbers are true if they’re non-
zero and other objects are true if they are not empty.

Object Value

”hello” True

”” False

[] False

{} False

1 True

0.0 False

None False

Table 1: Truth values (from Ascher and Lutz, pg 188)

Very often, methods on objects such as string methods will return a truth
value which you can use to carry out certain tasks. For instance, isupper()
returns a truth value:

>>> ’U’.isupper()

True

>>> ’U’.islower()

False

>>> ’Maria’.endswith(’a’)

4



True

>>> ’Maria’.endswith(’ia’)

True

References

Learning Python by Ascher and Lutz

5


